Modeling Hydraulic Problems Using the CVBEM and the Microcomputer
The Complex Variable Boundary Element Method (CVBEM) offers an effective and efficient means for modeling two-dimensional potential and related flow problems. The method has been applied...
Computer Modeling of Groundwater Flow
In attempting to numerically solve the nonlinear equation for flows in porous media, the Galerkin process, which bears a great similarity to direct methods of the calculus of variations,...
A Course in Hydrology Using Microcomputer Graphics
A three-day training course in hydrology and hydrologic methods has been developed for the Federal Highway Administration using an Apple IIe microcomputer for the presentation of all visual...
Interactive Computer Aided Graphic Water Well Pumping Test Evaluation Software
A microcomputer software package was developed which allows the user to interactively evaluate pumping tests using semilog and log-log graphic methods for time-drawdown, step-drawdown,...
Boundary Shear Stress in a Meandering Channel
Longitudinal and transverse velocity, bed shear, and water surface elevation were studied in a fixed-bed, meandering, laboratory channel with naturally varying, non-prismatic cross sectional...
Reactive Transport of Suspended Particles
Monte Carlo simulation of the total probability density function for each constituent easily handles non-linear reactions and has a cost that increases only linearly with the number of...
Numerical Models for Two-Dimensional Surface Runoff
Numerical models for surface runoff in watersheds having two-dimensional or horizontally varying topography are presented. Two finite element methodologies, a standard Galerkin and a streamline...
Numerical Waterbody Dynamics and Small Computers
The numerical hydrodynamics of free surface flows as applied to waterbodies presents a number of challenges, including choice of the spatial differencing schemes including representation...
Response of Floating Structures in a Directional Sea
A finite element numerical model is presented to predict the behavior of long floating structures in a multi-directional sea. A follow up numerical model analyzes an important but mostly...
Explicit Hydraulic Modeling of Sedimentation Transients in Alluvial Channels
An explicit finite difference numerical scheme is used in this study to model sediment transients in alluvial channels. The governing equations are momentum equation and continuity equation...
Water Distribution Systems Analysis and Graphics Using Microcomputers
In recent years, microcomputers have been increasingly employed in the analysis of water distribution systems. In addition to being used for hydraulic analysis, they can also be used to...
Aquifer Management Using Discrete Kernels in Microcomputers
An interactive simulation model based on the 'Discrete Kernel Approach' (a Green's function approach) is presented. The response functions (or the...
Hydrodynamic Model of River Flow on a Microcomputer
This paper presents a one-dimensional, finite element model for simulating hydrodynamic responses to various conditions on a river system by using microcomputers. Based on the Saint-Venant...
Applications of Discrete-Element Computational Models to Transient, Multi-Dimensional Problems in Hydrology
The direct computer simulation technique, discrete-element method (DEM) was applied in the development of transient, multi-dimensional mathematical models for simulating hydrologic conditions...
Three-Dimensional Simulation of Two-Fluid Movement in Porous Media Using the Boundary Element Method
The paper discusses three-dimensional problems that include a denser fluid overlain by water in an unconfined aquifer. The two fluid regions are bounded by two-dimensional surfaces, including...
Generation of Steady Density Currents Through Boundary Layer Control
The paper reports on a study to explore the conditions that trigger bifurcation of ambient flow/intrusion interaction into one of two drastically different regimes, i. e. current versus...
SCS User-Defined Storm Hydrograph (SCS-USH)
The Soil Conservation Service User-Defined Storm Hydrograph (SCS-USH) has been developed to provide engineers and regulatory officials with a simple microcomputer tool for defining design...
IIHR's Data Acquisition Systems and Their Applications
The Iowa Institute of Hydraulic Research (IIHR) has recently experienced rapid growth in number of experimental studies, in number of buildings housing these models, and in the diversity...
Tidal Modelling on IBM Microcomputers
The finite element code, QUIET, for the simulation of two-dimensional shallow water flow has been adapted from its mainframe form for use on the IBM PC, PC/XT, or AT. The model uses of...
Finite Element Analysis of Recirculating Flows
The primitive variable and stream-function-vorticity forms of depth averaged viscous fluid flow equations are compared via finite element computations on problems with the same meshes...
Return to search