The Fatigue Performance of Welded Joints in a Marine Environment
The fatigue lives of plate-plate, pipe-plate, and tubular welded joints tested in seawater under free corrosion, optimum cathodic protection and cathodic overprotection measured in the...

Early Age Strength Detection for In-situ Concrete
In recent years it has become increasingly beneficial to know the quality of concrete as soon as possible after it has been placed. This is especially true for high-rise concrete buildings...

Early Opening of Concrete Pavements to Traffic
Current practice for opening slab replacements and full-depth repairs to traffic ranges widely from 2 hours to several days. A rational and simple procedure is urgently needed for determining...

Flexural and Shear Moduli of FRP Beams
The analysis and design of structures of pultruded fiber reinforced plastic (FRP), constant cross-section, commercially produced, beams is discussed in the context of a shear deformation...

Compressive Deterioration of Cracked Concrete
When shear behavior of reinforced concrete (R/C) members is to be simulated, the compressive strength and the stiffness reduction of cracked concrete must be taken into consideration....

Behavior of a Crack Under Reversed Cyclic Loading
The results of two series of basic experimental studies for opening and closing behavior in RC members are reported. For the first series, axial forces were applied to the specimens in...

Ultimate Strength and Deformation of RC Panels
In this study, twenty reinforced concrete panels have been tested under pure shear. Test results showed that the compressive strength of concrete strut was strongly affected by bond characteristics...

Analytical Model for RC Panels Under Cyclic Load
There are several existing constitutive laws for cracked concrete and steel in RC developed in Okamura laboratory. These models have been developed and verified through reversed uniaxial...

Wind Tunnel Testing of the Karnali River Bridge
An extended wind tunnel testing program of the erection procedures and the stability of the completed one-tower cable-stayed Karnali River Bridge was conducted with the help of full bridge...

Aerodynamic Improvements for Plate-Girder Bridges
This paper describes the application of wind tunnel tests on plate-girder cable-stayed bridges to ensure that the cross-section will not be susceptible to wind-induced oscillations. Information...

Inclined-Cable Aerodynamics
A series of wind tunnel tests have been conducted to clarify the fundamental mechanism of the vibration of the inclined cables of cable stayed bridges. The influence of the cable orientation...

Lateral Force Distribution in Manufactured Housing from Full-Scale Testing
The research focused on the behavior of two manufactured 14 ? 66 ft houses under simulated wind loads. Extensive instrumentation was employed to insure the collection of data that would...

Panel-Sheathed Shear Walls ? Past and Future
In order for a building to resist the lateral forces caused by wind or earthquake, it is necessary that the building include a lateral force resisting system. When the walls are designed...

Lessons Learned from Dynamic Tests of Shear Panels
Thirteen 8-ft by 8-ft shear panels and fifteen 16-in by 18-in shear panels were tested dynamically at the Structural Testing Laboratory, Richmond Field Station, University of California,...

A Structural Analysis Model for Timber Shear Walls
A numerical modelling procedure for the non-linear analysis of timber shear walls is presented. The model includes the non-linear behavior of the connectors between the sheathing and framing,...

Shear Strength of P.P.C. Beams
50 beams of partially prestressed concrete were tested and 82 data of the ultimate shear-strength were obtained. Based on these results, this paper studies the effects of the degree of...

Analysis of Slender Prestressed Concrete Columns
This paper briefly describes an analytical model developed to study slenderness effects in prestressed concrete columns and walls and predict the characteristics of such members over a...

Macroscopic Models for R/C Shear Walls
In this paper, the discussion is mainly focused on four macroscopic models, recently proposed by Japanese researchers, for predicting ultimate strength of reinforced concrete (R/C) shear...

Verification of Macroscopic Models for R/C Walls
Macroscopic models utilized in a plastic analysis for predicting the ultimate strength of reinforced concrete members have been developed in Japan as well as in Europe. In the JCI committee,...

Verification of Macroscopic Models or RC Walls by FEM
Several macroscopic models based on the limit analysis have been proposed for obtaining the ultimate strength of reinforced concrete shear walls in Japan. When using these models, it is...

 

 

 

 

Return to search