Stochastic System Identification in Structural Dynamics
Recently, new identification methods have been developed by using the concept of optimal-recursive filtering and stochastic approximation. These methods, known as stochastic identification,...
Applications of ARMA Models for Seismic Damage Prediction
As an alternative to current design practice which is based on peak measured ground motions and scaled records from different events, individual earthquake records are treated as samples...
Random Vibrations of Geometrically Nonlinear Finite Element Structures
A finite element formulation combined with stochastic linearization method is developed to study the large amplitude vibration characteristics of structures subjected to random loadings....
Moments of Nonlinear Systems
In this paper the problem of writing the equations of moments of nonlinear systems excited by both external and parametric Gaussian white processes is re-examined. The classical K. Ito...
Stochastic Bifurcation of Nonlinear Parametric Systems
Parametrically excited systems with progressive restorings possess two different solutions: the trivial one and a stationary branching process. The second solution is physically existent...
Actual Versus Assumed Behaviour of Girder Bridges
It is generally believed that the discrepancies between calculated and actual responses of bridges can diminish, to the point of being nonexistent, with refinement in the method of analysis....
Bridge Repairs?Unexpected Effects on Reliability
There is a significant probability that a bridge will require repairs at some time during its service life. Repairs correcting one deficiency can cause other, unanticipated problems. Awareness...
Reliability of Cracked, Prestressed Girders
For prestressed concrete structures in non-aggressive environments or where corrosion-protected prestressing strands are used, it may be possible to allow flexural cracking into the precompressed...
Rehabilitation of Highway Bridges: Design and Operational Considerations
The design of a rehabilitation of a bridge which must maintain some lanes of traffic requires special consideration of construction procedures and traffic control, which are discussed...
EXPSYS: Offshore Structures' Expert System
This paper builds a framework of an expert system in the area of offshore structures. Expert systems, in general, are classification systems. They embody a core of knowledge about a specific...
Structure of the Expert FRAMEX System on Fracture Mechanics
The FRAMEX expert system gathers, through independent modules, knowledge analysis techniques to be used by an expert for developing a fracture problem diagnosis. The system includes three...
The Role of Decision Rules on Structural Safety Evaluation Systems
Three steps are involved during an assessment procedure. The first step is to make a diagnosis for possible causes of the damage, the second is to perform a qualitative evaluation including...
Importance Sampling in Structural System Reliability
In structural system reliability analysis, it is frequently necessary to resort to Monte Carlo simulation (MCS). This paper focuses on Importance Sampling, an advanced MCS method, which...
Experiences with Applications of Importance Sampling in Structural Reliability Computations
This paper presents some experiences and observations relating to the use of importance sampling in structural systems reliability computations. These are presented with three examples,...
Reliability Based Optimal Structural and Mechanical Design
A reliability based optimal design strategy has been developed. Nonlinear limit state functions and nonnormal random variables can be accommodated. For structural systems analysis, a failure...
A Kinematic Approach to Simulation-Based System Reliability Evaluation
System reliability of complex structural engineering systems is often estimated by simulation-based procedures, with failure analysis based on a static (limit state) formulation or a kinematic...
System Reliability Under Time Varying Load
The reliability of ductile and brittle structural systems under time varying loads is investigated. The formulation in the context of outcrossing of a vector process is examined. A new...
Reliability Methods for Steel Members Subjected to Axial Load and Moment
There has been a significant amount of research performed on determining the reliability of elastic-plastic frames where failure is through the formation of a plastic collapse mechanism....
Reduction of Imposed Loads for Beam and Column Design
Imposed loads on beams and columns are generally reduced to effect in economy in design. A study to evaluate the reduction criteria by evaluating the Equivalent Uniformly Distributed Loads...
Effects of Nonlinearities on Structural Reliability and Serviceability
Serviceability and failure limit states are computed using the Simple Plastic Theory (SPT) as well as with a Nonlinear Structural Analysis Program (NSAP). Geometric and material nonlinearities...
Return to search