Atomistic Simulation and Visualization of Thermal Disorder in a Crystalline Ice
The process of thermal disorder in crystalline ice has been simulated using a molecular dynamics model. The thermal disorder is induced by raising the temperature of the system. The molecular...

Simulation of Failure Processes in Cementitious Particle Composites
Progressive failure analysis in cementitious particle composites such as concrete requires a realistic description of the topology of the composite structure and the interaction of the...

Mechanical Behavior of Composites with Interphases
The effect of interphases on the mechanical behavior of fiber-reinforced composites is studied. Two problems, a cracked fiber in a matrix, and a fiber pulled out of a matrix, are discussed....

Micro-Damage Process Model for Polycrystalline Ice
This paper presents a micro-damage process model for freshwater polycrystalline ice deforming at the high end of the ductile-to-brittle transitional domain of strain rated. Damage is attributed...

Deformation of Concrete Due to Drying
The deformation of drying concrete is numerically investigated considering the effect of random arrangement of coarse aggregates. The result indicates that a part of the statistical variation...

Microscopic Modeling of Shear Strength of Contaminated Soils
The degradation of shear strength of soils due to prolonged contamination of soils is an emerging problem. The experiments conducted at New Jersey institute of Technology showed a gradual...

Factors Affecting the Incremental Stiffness of Particle Assemblies
A simple numerical experiment was performed on an assembly of densely packed spheres in order to investigate the factors that affect an assembly's incremental stiffness. The...

Numerical Undrained Cyclic Loading Simulations Using the Discrete Element Method
Three dimensional numerical experiments on random arrays of rough spheres were performed using the discrete element method to study the behavior of granular soil and the results were compared...

Numerical Simulation of Localization in Granular Materials
The structure of persistent shear bands in granular materials is investigated by numerically simulating an idealized assembly of two-dimensional particles. Flexible stress-controlled boundaries...

A Particle Beam Simulation
A two-dimensional beam simulation is developed in which the beam is composed of uniform rectangular blocks. Internal forces in the beam are caused by relative motion between adjoining...

Interparticle Sliding and Rolling
Numerical experiments are done with a continuum plasticity program in order to study the initiation and evolution of shear bands. Many elements are used in order to resolve families of...

Hazardous Materials Data: A Federal Perspective
This paper discusses the evolution and current status of the Hazardous Materials Incident Report System (HMIRS) maintained by the Research and Special Programs Administration (RSPA) of...

Developing a HazMat Incident Evaluation Program
This paper describes the Illinois Hazardous Materials Incident Evaluation Program. The history, development strategies, implementation, forms for reporting, screening and data input, and...

GIS Risk Analysis of Hazardous Materials Transport
The Geographic Information System (GIS) was used to assess the risks and vulnerability of transporting hazardous materials and wastes on the Arizona highway system. This paper discusses...

In Situ Determination of Smith Soil Model Parameters for Wave Equation Analysis
A methodology for in situ determination of Smith soil model parameters for wave equation analysis is presented. The method uses a small-rod penetration test in conjunction with CAPWAPC...

Determination of the Deformation Characteristics of a Jet-Grouted Shallow Tunnel in Alluvial Deposits by Means of In-Situ Measurements and Back Analysis
The deformation characteristics of a jet-grouted shallow tunnel in alluvial deposits are investigated. An intensive in-situ measuring program accompanied each of the various excavation...

Wave Equation Modelling of the SPT
The stress wave propagation in the Standard Penetration Test (SPT) is described in this paper. It is shown that the SPT is a complex dynamic system and that both force and motion measurements...

An Expert System for Estimating Soil Strength Parameters
An expert system to aid in selecting shear-strength parameters for use in stability analysis was developed for use on a PC. It provides guidance in interpreting strength measurements and...

Three-Dimensional Nonlinear Study of Piles and Simplified Models
In a recent study the authors examined the effect of the nonlinear behavior of soil on the axial and lateral response of one or two piles due to monotonic and cyclic pseudodynamic loading...

Do Simplistic Methods of Foundation Design Produce Reliable Foundations?
Many foundations today are designed using deterministic (single value) analysis techniques which do not reflect the natural variability of soil properties. If the standard deviation and...

 

 

 

 

Return to search