Experience with the p-Version Program PROBE
The conventional approach in the FEM is known as the h-version, in which the solution accuracy depends on the size h of elements. The alternative approach is the p-version, in which the...

Buckling of Tapered Columns by P-Version of F.E.M.
The local, distortional, overall, and interactive buckling of tapered, thin-walled members under axial compression and flexure are considered by using three-dimensional models based on...

An Object-Oriented Model for Building Design and Construction
This paper describes the initial work done in developing a modelling environment which captures both functional and spatial aspects of a building, abstract and detailed descriptions, and...

A KBES for Seismic Design of Buildings
A knowledge-based expert system for earthquake resistant design of buildings is described. The knowledge-intensive nature of the domain and the consequent motivation for an expert-system...

A Prototype Expert System for Steel Connections
A PC-based, menu-driven, five-module prototype knowledge-based system has been developed for steel connections. The system can solve various steel connection problems by utilizing the...

Automated Design of Reinforced Concrete Components
This paper presents strategies for automating the design of reinforcement in two types of concrete components, namely T-beams and circular columns. These strategies may serve as examples...

Computers in Civil Engineering Education at Clemson University
This paper describes the current use of computers in the civil engineering undergraduate education of students at Clemson Univrsity, the land-grant university of the State of South Carolina....

CADD for the Structural Engineer
There is a need for educating structural engineers on Computer Aided Design and Drafting (CADD) programs. Many structural engineering firms use a combination of in-house and commercially...

Early Integration of Computational Methods in the Engineering Curriculum
Practicing civil engineers are continuing to take greater advantage of computers to solve structural problems of increasing complexity. To prepare for practice, engineering students must...

An Integrated Knowledge System of Seismic Vulnerability and Risk for Engineered Facilities
This paper describes an integrated knowledge system for the assessment of the seismic vulnerability and risk of engineered facilities. The system integrates knowledge from many fields...

A Knowledge Based System for Deriving Qualitative Seismic Behavior
The analysis and design of complex or critical facilities, such as tall buildings, nuclear power plants, offshore structures, or cable stayed bridges requires that these facilities be...

A Knowledge-Based System for Evaluating the Seismic Resistance of Existing Buildings
The large number of existing buildings designed without considerations of seismic loading warrants the development of computer aids for the evaluation of their seismic resistance. Since...

Some Interactive Graphics and Parallel Processing for Earthquake Engineering
Ongoing research at Cornell University on computer-aided earthquake engineering of building structures is exploiting innovations in computing in several areas. Although some of the approaches...

Superquadric Object Representation for Dynamics of Multi-Body Structures
While the finite element representation of an object in terms of nodal coordinates and shape functions is ideal for representing the stress and energy state, it is not well suited to the...

Discrete Optimization of 3D Steel Frames
The purpose of this paper is to report the results of the application of a general discrete optimization procedure to the design of a realistic, three-dimensional steel building frame....

Optimizing the Design of High-Rise Steel Buildings
The approximate stiffness method is utilized for a proposed procedure to evaluate the stiffness of the various frames and the stiffness of the members within the frames to provide a drift-controlled...

Optimal Design of Tall RC Tube Buildings
The analysis and design of reinforced concrete framed tube buildings is formulated as a nonlinear optimization problem and solved using modern design optimization software. The influence...

Vector Optimization of Structural Systems
In this paper the basic ideas of vector optimization are presented, and both the weighting and constraint methods are applied to vector optimization of truss systems by minimizing the...

Optimization of Structures Subjected to Vibrations
A minimum cost optimization procedure is presented for the analysis of multi-degree freedom structures subjected to steady, transient and random vibration environment. The procedure is...

Methodology in ODSEWS-2D-II for Optimum Design of Structures to Seismic and Wind Forces
This paper presents the theoretical derivations and numerical procedures used in the computer program called ODSEWS-2D-II for the analysis and optimum design of 2-dimensional regular and...

 

 

 

 

Return to search