Modeling of Plate and Shell Structures with
Finite element models for the analysis of plates and shells, based on the concept of hp-extension are presented. A methodology for the control and analysis of the error of the finite element...
p-Version of FEM and Shape Optimal Design
This paper presents some research results obtained recently in using the p-version of the finite element method (FEM) for shape optimal design. It is shown that the p-version 2-D elastic...
Stress Computations for Nearly Incompressible Materials
Computation of stresses by the finite element method (FEM) in the case of nearly incompressible isotropic elastic materials is discussed. It is shown that for moderately high Poisson's...
Buckling of Tapered Columns by P-Version of F.E.M.
The local, distortional, overall, and interactive buckling of tapered, thin-walled members under axial compression and flexure are considered by using three-dimensional models based on...
An Object-Oriented Model for Building Design and Construction
This paper describes the initial work done in developing a modelling environment which captures both functional and spatial aspects of a building, abstract and detailed descriptions, and...
A Prototype Expert System for Steel Connections
A PC-based, menu-driven, five-module prototype knowledge-based system has been developed for steel connections. The system can solve various steel connection problems by utilizing the...
Computers in Civil Engineering Education at Clemson University
This paper describes the current use of computers in the civil engineering undergraduate education of students at Clemson Univrsity, the land-grant university of the State of South Carolina....
CADD for the Structural Engineer
There is a need for educating structural engineers on Computer Aided Design and Drafting (CADD) programs. Many structural engineering firms use a combination of in-house and commercially...
Early Integration of Computational Methods in the Engineering Curriculum
Practicing civil engineers are continuing to take greater advantage of computers to solve structural problems of increasing complexity. To prepare for practice, engineering students must...
A Knowledge Based System for Deriving Qualitative Seismic Behavior
The analysis and design of complex or critical facilities, such as tall buildings, nuclear power plants, offshore structures, or cable stayed bridges requires that these facilities be...
Some Interactive Graphics and Parallel Processing for Earthquake Engineering
Ongoing research at Cornell University on computer-aided earthquake engineering of building structures is exploiting innovations in computing in several areas. Although some of the approaches...
Superquadric Object Representation for Dynamics of Multi-Body Structures
While the finite element representation of an object in terms of nodal coordinates and shape functions is ideal for representing the stress and energy state, it is not well suited to the...
Discrete Optimization of 3D Steel Frames
The purpose of this paper is to report the results of the application of a general discrete optimization procedure to the design of a realistic, three-dimensional steel building frame....
Optimizing the Design of High-Rise Steel Buildings
The approximate stiffness method is utilized for a proposed procedure to evaluate the stiffness of the various frames and the stiffness of the members within the frames to provide a drift-controlled...
Optimal Design of Tall RC Tube Buildings
The analysis and design of reinforced concrete framed tube buildings is formulated as a nonlinear optimization problem and solved using modern design optimization software. The influence...
Vector Optimization of Structural Systems
In this paper the basic ideas of vector optimization are presented, and both the weighting and constraint methods are applied to vector optimization of truss systems by minimizing the...
Methodology in ODSEWS-2D-II for Optimum Design of Structures to Seismic and Wind Forces
This paper presents the theoretical derivations and numerical procedures used in the computer program called ODSEWS-2D-II for the analysis and optimum design of 2-dimensional regular and...
Optimization for Exact Stability of 2-Bar Trusses
This paper is concerned with the structural optimization problem of minimizing the weight of a 2-bar truss subject to nonlinear stability constraints. Optimization problems for stability...
Parallel Computation for Linear Programming
In this paper, the basic Simplex algorithm is reexamined. Computational steps which can be done in parallel are identified, and a parallel version of the Simplex method is implemented...
A Method of Computing Impact and Fatigue Life in the Railway Steel Girder Bridge
The purpose of this paper is to investigate the dynamic interactions between an steel girder bridge and a moving freight train. A non-linear, 100-ton, freight car vehicle model and a 70-ft...
Return to search