Design Considerations for Large-Scale Filament-Wound Composite Structures
An experimental investigation was conducted to quantify scaling effects in filament-wound composite structures. These preliminary results support the notion that an increase in thickness...
Optimum Design of Laminated Metal Matrix Composites
With the increased demand for high-strength, lightweight materials that function successfully in high temperature environments, the effective development of metal matrix composites has...
Frictionless Contact of Composite Laminates
An approximate solution technique for determination of contact stress distribution under a curved, rigid punch indenting an arbitrary laminated composite plate is outlined. The individual...
Elastic Stability of a Laminated Column
Buckling load of an unsymmetric, laminated column is obtained through the use of imperfection method. The condition requiring to have non-vanishing bending moment at the ends of a pinned-pinned...
A Damping Model for the Vibration of Nonlinear Laminated Composite Cylindrical Panels with High Order Transverse Shears
The damping characteristics of nonlinear vibration of a cylindrical panel including large displacements/rotations and parabolic transverse shears has been discussed in this study. The...
Statistical Strength Analysis of Composites
A new modified six parameter Weibull distribution model has been adopted to analyze strength data structure of ARALL laminated and graphite-epoxy composites. This model shows better correlations...
Partial Hybrid Stress Element for Higher-Order Laminated Plates Theory
The partial hybrid stress method is applied to higher-order plate theory for orthotropic laminated plates. This new element performs better than displacement formulation and approaches...
Finite Element Analysis and Testing of a Laminated Composite Fuselage Test Structure
A test structure modeling a full scale section of a composite aircraft fuselage was designed, analyzed, fabricated, and pressure tested. The test structure consisted of a cylindrical graphite...
Damage Tolerance of Composites
The damage tolerance issue in composites is driven by the requirement for and implementation of a structural integrity criterion for a structural system. A key element in the design philosophy...
Coupled Bending and Twisting of Thin-Walled Composite Beams
Thin-walled open-section composite material beams of the T, I and J geometries are routinely used as stiffeners for structural components in aerospace vehicles (Starnes et al, 1985). In...
Failure Characterization of Structural FRP Bars
A combined experimental and theoretical investigation on the structural behavior of fiber reinforced plastic (FRP) bars is presented. Test results indicate that the ultimate strength decreases...
On the Design of Laminated Composite Flange: A Model with Experimental Verification
A parametric model has been developed for the optimum design of laminated composite flange. The study focuses on the evaluation and performance optimization of composite flanges with the...
Visualization of the Microstructural Response of Lightly-Cemented Granular Soils Under Uniaxial Strain Conditions
The microstructural response of granular soil under uniaxial strain is being investigated through direct observation of micromotions. Two techniques are being refined to quantify individual...
Bond Strength of Reinforcing Bars in SIFCON
This paper presents a brief summary of an ongoing investigation on the bond characteristics of deformed reinforcing bars embedded in a SIFCON matrix. A significant increase in bond strength,...
Simulation of Failure Processes in Cementitious Particle Composites
Progressive failure analysis in cementitious particle composites such as concrete requires a realistic description of the topology of the composite structure and the interaction of the...
Mechanical Behavior of Composites with Interphases
The effect of interphases on the mechanical behavior of fiber-reinforced composites is studied. Two problems, a cracked fiber in a matrix, and a fiber pulled out of a matrix, are discussed....
Theoretical and Experimental Mechanisms of Toughening in Multi-phase Materials
Multi-phase materials are an important class of materials being developed for aerospace primary structural applications. Multi-phase materials are those materials consisting of two or...
Nonlocality of Continuum Approximation of Microcracked Materials
A continuum with nonlocal damage has recently been shown to be an effective approach for the analysis of strain-softening structures. The basic idea is that only the damage, normally caused...
Micro-Damage Process Model for Polycrystalline Ice
This paper presents a micro-damage process model for freshwater polycrystalline ice deforming at the high end of the ductile-to-brittle transitional domain of strain rated. Damage is attributed...
Moisture Diffusion in Concrete and Mechanisms of Drying Creep
The Pickett effect is the excess of creep at drying over the sum of shrinkage and basic creep. Several theoretical models have been presented to speculate on the mechanisms of this effect,...
Return to search