Response of Nonclassically Damped MDOF Systems to Nonstationary Random Excitation
A procedure for calculating the dynamic response of a nonclassically damped multi-degree-of-freedom (MDOF) system to nonstationary non-white vector-valued random excitation is developed...

Response Triscpectrum for a Yielding Structure
Simulation is used to obtain information about non-Gaussian aspects of the absolute response acceleration of a bilinear hysteretic oscillator with an excitation which is Gaussian white...

Adequacy of Statistical Linearization for Nonlinear Degrading Structural Systems
An investigation is carried out to examine the validity of current practice in using statistical linearization method for nonlinear degrading structures subject to random ground acceleration....

A Comparison of Modeling Techniques for the Buckling of Stiffened Shells
Different techniques are used to compute the collapse loads of a family of stiffened shells. Large differences are observed between the various predictions. Detailed numerical studies...

Characterization of Acoustic Emission Signals
Separation of crack growth signals is of fundamental importance for detecting, locating and determining the significance of an internal flaw using acoustic emission techniques. An analytical...

Statistical Strength Analysis of Composites
A new modified six parameter Weibull distribution model has been adopted to analyze strength data structure of ARALL laminated and graphite-epoxy composites. This model shows better correlations...

Flexural and Extensional Motion of Moderately Thick Laminated Composite Plates
A general theory of flexural and extensional motion of moderately thick laminated composite plates is developed for linear elastic materials and small deformation. Interlaminar stresses...

Coupled Bending and Twisting of Thin-Walled Composite Beams
Thin-walled open-section composite material beams of the T, I and J geometries are routinely used as stiffeners for structural components in aerospace vehicles (Starnes et al, 1985). In...

Failure Characterization of Structural FRP Bars
A combined experimental and theoretical investigation on the structural behavior of fiber reinforced plastic (FRP) bars is presented. Test results indicate that the ultimate strength decreases...

The Application of Computerized Tomography for Determining Material Properties
X-ray computerized tomography (CT) is an imaging technique that has been used by the medical community for a number of years and is well documented. However, the adaption of this technique...

Atomistic Simulation and Visualization of Thermal Disorder in a Crystalline Ice
The process of thermal disorder in crystalline ice has been simulated using a molecular dynamics model. The thermal disorder is induced by raising the temperature of the system. The molecular...

On Statistical Micromechanical Process Damage Models for Brittle Solids with Interacting Microcracks
Two-dimensional micromechanical damage models with strongly interacting microcracks are presented to investigate the overall nonlinear mechanical responses of microcrack-weakened brittle...

Influence of Finite Deformations in the Stress-Strain Modelling of Granular Media
An incremental formulations of the stress-strain law is presented for quasi-static deformation of granular solids. The stress-strain relationship is derived for an element of granular...

Models for Rock Mass Dynamics
The phenomenology of explosive effects in hard rocks is of interest to workers in the energy field, in the defense field, and in planetary science. The salient characteristic of hard rock...

Modeling of Successive Impacts in Sand
The principal aspects of numerical modeling of successive, high energy impacts in sand are discussed in this paper. These include the numerical formulation used for solution of the equations...

A Micromechanics Model for Rough Interfaces
A new constitutive model for transfer of interfacial tractions along rough cracks in strain softening composites is presented. The model relates the normal and shearing stresses on the...

Penetration Tests in a Particulate Calibration Chamber
A numerical technique which couples discrete element method with boundary element method has been developed to simulate a two dimensional particulate assembly. Soil particles in the near...

Comparison of a Microscopic Model and a Macroscopic Model Predictions on the Stress-Strain Behavior of a Soil
The stress-strain behavior of a soil under drained triaxial conditions was simulated using the Microscopic constitutive model TRUBAL. The model parameters for the Macroscopic constitutive...

Microscopic Modeling of Shear Strength of Contaminated Soils
The degradation of shear strength of soils due to prolonged contamination of soils is an emerging problem. The experiments conducted at New Jersey institute of Technology showed a gradual...

Constitutive Relations for Granular Solids Accounting for Heterogeneous Deformation Fields
Under high deviatoric stress levels corresponding to large strains, the deformation of granular media is highly heterogeneous. A micro-mechanical approach is developed here to model the...

 

 

 

 

Return to search