Dynamic Stability of Composite-Material Circular Cylindrical Shells with Orthogonal Stiffeners
The governing equations are formulated for general (axisymmetric or unsymmetric) vibrations of thin circular cylindrical shells of composite material and reinforced with axial (stringer)...
Variational Solutions of the Von Karman Plate Theory Based on a Mixed Formulation
A mixed formulation, involving the transverse deflection w(x,y) and the in-plane stress function F(x,y) as the unknown variables, will be used to obtain improved variational solutions...
Analog Electronic Simulations of a Nonlinear System
We perform electronic analog simulations of a harmonically forced Duffing oscillator. The addition of noise perturbations of sufficient intensity is shown to induce transitions between...
Routes to Chaos of a Vertically Rotating Pendulum
Each blade of a mechanical shredder may be modeled by a pendulum whose pivot rotates in a vertical circle. The transition to chaos of small periodic motion about radial lines us the driving...
Regularization Methods for Identification of Structural Damage
Generally, various non-unique solutions may be obtained from ill-conditioned equations. Several methods are available to obtain a unique (minimum energy) solution to a modified and thus...
Updating Dynamic Models and Their Associated Uncertainties for Structural Systems
The problem of updating a structural model and its associated uncertainties using dynamic test data is addressed, considering uncertainties which arise from measurement noise, modeling...
Applications of Viscoelastic Damper to Jointed Structures for Seismic Mitigation
Some structures, such as dams, are built with contraction joints that might carry some small tensile stresses. Such joints are expected to open and close during an earthquake. That will...
Intra Vena Cava Balloon Pumping
An innovative prototype intravenous hollow-fiber oxygenator was developed in 1984 by B.G. Hattler. The device consisted of a microporous, hollow-fiber membrane oxygenator inserted into...
An Evaluation Study of Modified Mohr-Coulomb and Cap Models
Two failure criteria, namely Mohr-Coulomb and cap models, are considered in this paper with some modifications. Mohr-Coulomb theory is applied to concrete after stress and strain cut-offs...
Mathematical Characterization of Fabric and Its Use in Mechanics of Geomaterials
Increased evidence of the influence of their discrete nature on the observed behavior of geomaterials has prompted a number of investigators to look at these materials at the microstructural...
Micromechanics Based Design for Pseudo Strain-Hardening in Cementitious Composites
Micromechanical model constructed on the basis of fracture mechanics and fiber bridging provides a means of selection of fiber, matrix and interface property combinations for which short...
Computer Simulation of Granular Flows
Discrete-particle computer simulations using up to 15,000 identical spheres reproduce particle-scale information obtained from high-speed motion picture observations of disperse, collision-dominated...
Discrete Mechanics of Sediment Transport
Usually a granular medium is being represented by a continuous approximation in which the degrees of freedom of individual grains are averaged away in favor of a partial differential equation...
Computer Simulation of Dry Layered Granular Flow Down an Incline Composed of Grains
Experiments show that gravity-driven dry granular flows are essentially layered for smooth spheres. This paper describes layer-to-layer interaction in the flow. Assuming two-dimensional...
Numerical Simulation of a Sphere Moving Down an Incline with Identical Spheres Placed Equally Apart
This paper describes a numerical study of an elastic sphere moving down an incline with a string of identical spheres placed equally apart. Two momentum equations and a moment equation...
Distributed Failure Analysis, Fallacies and Remedies
In the past, two distinctly different approaches - smeared and discrete failure descriptions have been utilised to capture failure mechanisms in solids and structures. These two approaches...
Numerical Analysis of Discrete Nonlinear Fracture Mechanics
Because cementitious materials tend to fail by fracture along discrete interfaces, it makes sense to analyze this behavior with discrete nonlinear fracture mechanics. Using the finite...
Discrete Markov Process Approach to Fatigue Crack Growth
The discrete Markov approach considered herein is simple to implement and uses a two-dimensional stochastic model in conjunction with simulation to estimate model parameters. The possibility...
Stochastic Mixed Finite Difference Method
Some aspects of numerical solutions of stochastic mechanics problems are considered. The Finite Difference method for discretization of stochastic continuous media problems is discussed....
Interaction Effects in the Hybrid Control of Euler-Bernoulli Beams
The effect of viscous and Voigt damping upon the open loop response of simple continua such as Euler-Bernoulli beams is well understood. However, when attempting to control a distributed...
Return to search