Systolic Anterior Motion of the Mitral Valve: In Vitro Flow Studies
Using an in-vitro approach, the goal of this study was to determine and to characterize the mechanism of systolic anterior motion of the mitral valve in obstructive hypertrophic cardiomyopathy....
Leakage Characteristics of the St. Jude Heart Valve
The requirement for anticoagulant therapy in patients implanted with mechanical heart valve prostheses is well known. A plausible explanation for this requirement is that the leakage flow...
Intra Vena Cava Balloon Pumping
An innovative prototype intravenous hollow-fiber oxygenator was developed in 1984 by B.G. Hattler. The device consisted of a microporous, hollow-fiber membrane oxygenator inserted into...
Flow Visualization Studies in the Novacor Left Ventricular Assist System
This paper discusses a series of experiments to visualize and measure flow fields in the Novacor left ventricular assist system (LVAS). The experiments utilize a multiple exposure, optical...
The Morphology and Dynamics of Natural and Laboratory Grain Flows
Artificially generated sand flows that display considerable similarity with field examples on eolian dunes allow documentation of the relationships between grainflow scales and the characteristics...
Computer Simulation of Granular Flows
Discrete-particle computer simulations using up to 15,000 identical spheres reproduce particle-scale information obtained from high-speed motion picture observations of disperse, collision-dominated...
Discrete Mechanics of Sediment Transport
Usually a granular medium is being represented by a continuous approximation in which the degrees of freedom of individual grains are averaged away in favor of a partial differential equation...
Computer Simulation of Dry Layered Granular Flow Down an Incline Composed of Grains
Experiments show that gravity-driven dry granular flows are essentially layered for smooth spheres. This paper describes layer-to-layer interaction in the flow. Assuming two-dimensional...
Numerical Simulation of a Sphere Moving Down an Incline with Identical Spheres Placed Equally Apart
This paper describes a numerical study of an elastic sphere moving down an incline with a string of identical spheres placed equally apart. Two momentum equations and a moment equation...
A Sphere Moving Down an Inclined Bumpy Surface
A sphere moving down a bumpy incline in the air is studied theoretically and experimentally. A method based on the principle of energy conservation is used to express the average velocity...
Distributed Failure Analysis, Fallacies and Remedies
In the past, two distinctly different approaches - smeared and discrete failure descriptions have been utilised to capture failure mechanisms in solids and structures. These two approaches...
Pressure Losses Across Sequential Stenoses in Collapsible Tubing
The fluid dynamics of a model of a diseased artery with multiple stenoses were investigated in a recirculating steady-flow system over a range of Reynolds numbers (Re) from 30 to 1100....
Pulmonary Artery Velocity Profiles in Young Lambs
This report describes progress made in our laboratory in examining pulmonary artery velocity patterns in normally maturing lambs. Lambs from four age groups were selected for study--2...
Flow in a Model Symmetric Bifurcation
Flow through bifurcations is of particular interst to the field of hemodynamics and respiration dynamics. In this paper flow through a model symmetric bifurcation is studied experimentally...
Fluid Dynamics at the Carotid Bifurcation
Arterial wall distensibility is believed to be of secondary importance to the general flowfield of the human carotid artery. However, it has been reported that it may have greater influence...
Lumped Parameter Model for the Dynamics of the Pulmonary Circulation
The pulmonary circulation is a low pressure system such that respiration has an important effect on pulmonary hemodynamics and has to be taken into account when predicting its behavior....
An Elastoviscoplastic Model for High Strength Concrete
An elastoviscoplastic model of overstress type is proposed for high-strength concrete in this study. With its viscosity parameters determined with experimental data from the split-Hopkinson-pressure-bar...
A Cumulative Failure Criterion of Concrete Under Uniaxial Dynamic Compressive Loading
It has been previously reported that the strength and critical strain of concrete under impact increase with strain rate, but neither of them can predict failure. A cumulative damage parameter...
Roll-Waves on a Non-Newtonian Mud Layer
This article extends the theory of roll-waves due to Dressler (1949) to a thin layer of mud modeled as a power law fluid. Roll-waves are periodic bores moving at a constant velocity down...
Stability of Systems of Rigid Bodies by Bounding Theorems
The stability of systems of systems of rigid bodies subjected to conservative and dissipative forces is investigated by considering the minimization of a work function subject to the kinematic...
Return to search