Pattern Formation and Time-Dependence in Flowing Sand
The authors present results for a number of experiments on flowing granular materials and a novel cellular automata model for the flow of these materials when the grains are long and thin....

Modeling the Chaotic Behavior in Simple Shear Granular Flows
Simple shear granular flows have demonstrated a variety of puzzling phenomena. Both computer simulations and physical experiments have discovered particle grouping, layering and shear...

Mechanics of Granular Materials at Very Low Effective Stress Levels
Gravity's influence on laboratory specimens of uncemented granular materials subjected to low effective stresses, makes it impossible to evaluate constitutive properties in an unambiguous...

Thermal Load for p-Version Laminated Elements
A p-version finite element formulation is presented for determining temperature stresses in laminated composite axisymmetric problems. Formulation for a rectangular axisymmetric p-version...

Numerical and Experimental Studies of Vibration of Impact Damaged SMC Composite Plates
This paper presents a parametric finite element study and an experimental investigation to free vibration of clamped, circular short-fiber reinforced composite plates with various degrees...

Stresses in Open Section Fiber Reinforced Composite Beams Under Constant Shear Loading
A strength of materials approach from the ply level is used to derive expressions for stresses in statically determinate open section composite beams subjected to constant shear loading....

Macromodeling of Complex Composites
Dimensionally reduced p-version finite elements based on higher order theory are developed for modeling laminated composite plates and shells in the presence of cracks, notches, and delaminations....

Laboratory Testing of Mechanical Rock Bolts
An analytical solution to a boundary value problem of a clamped cylindrical panel with anti-symmetric angle-ply laminations subjected to transverse loads is presented. Sanders' kinematic...

An Analysis of an Inflatable Module for Planetary Surfaces
Design and construction of a structure on planetary surfaces requires addressing a host of issues not encountered on Earth. A modular quilted inflatable structure consisting of thin membranes...

Prototype Lunar Base Construction Using Indigenous Materials
A lunar base must be designed to withstand harsh lunar conditions, which include severe internal pressure loads and a high radiation level. Yet to provide for economical and rapid future...

Cylindrical Fabric-Confined Soil Structures
Using the local soil as a structural material can greatly reduce the transport requirements for constructing Lunar and Martian surface structures. A fabric-soil structural concept which...

Experimental, Physical and Numerical Modeling of Lunar Regolith and Lunar Regolith Structures
An extensive series of laboratory strength and deformation experiments have been performed on a lunar regloith simulant. Results of these experiments are compared to results from experiments...

The Challenge of Constraining Mass for Planetary Construction
This paper discusses the issue of minimizing the mass required to be delivered from earth for planetary construction. New machinery, methods and concepts are discussed....

Constructing Radiation Shields with Textiles for Lunar Applications
The problem of radiation shielding on the lunar surface is significant. The mass required for adequate shielding is enormous and economics would dictate the use of lunar soil for this...

Building Lunar Roads?An Overview
Outposts and permanent installations on the moon will need a network of surface roads connecting them. The problem of creating such roads is more challenging than on Earth in most ways,...

Construction of a Far-Term (2020+AD) Lunar Base
Several case studies have been performed which provide interesting insights into the design and operation of a lunar base. Yet few of these studies have addressed the specific steps which...

Mass and Energy Tradeoffs of Axial Penetration Devices on Lunar Soil Simulant
Axial penetration of the lunar surface was performed to collect soil samples with drive tubes and drill cores on the six successful Apollo missions. Although the pile-driving and drill...

Indigenous Planetary Construction Material Through Soil Modification
This paper will discuss the theory of soil modification and its potentials for producing planetary construction materials. The authors will also present the results of prelimnary experriments...

Mechanical Properties of Lunar Soil and Simulants
Investigation of the physical and mechanical properties of lunar soil carried out by the USSR and the USA; both in situ and on returned samples, has resulted in considerable information...

Structural Materials from Lunar Simulants Through Thermal Liquefaction
Thermal liquefaction that allows development of intermediate ceramic composites from a lunar simulant with various admixtures is used to develop structural materials for construction on...

 

 

 

 

Return to search