Two Principles for Data Based Probabilistic System Analysis
by Vicente Solana, Natl Research Council of Spain, Spain,Niels C. Lind, Natl Research Council of Spain, Spain,
Document Type: Proceeding Paper
Part of: Structural Safety and Reliability
Abstract:
A major problem in probabilistic system analysis is to find a self-consistent method of inference about probabilities based on a random sample of system state variables. Such a method is formalized as a two-phase process. Invariance requirements are reviewed and expressed as a strong invariance principle. A principle of data monotonicity is restated on the basis of propositional probability formalism. Distributions may be assigned by minimization of cross-entropy using fractile constraints. It is shown that this method satisfies the requirements of both principles.
Subject Headings: Probability | System analysis | Data analysis | Entropy methods | Failure analysis | Statistics | Systems engineering
Services: Buy this book/Buy this article
Return to search