A New NDT Device for Comprehensive Pavement Maintenance (Theoretical Aspects)
A new nondestructive testing (NDT) device is being developed to detect some precursors to pavement distress. The principle of operation of the device is based upon the generation and detection...

Flow Dynamics in an End-to-End Vascular Graft Junction
A study consisting of both experimental and numerical methods was performed to determine flow dynamics in the vicinity of an end-to-end anastomosis. The experimentally determined geometries...

Flexural and Shear Studies of Carbon Fiber Reinforced Beams
This paper presents the results of laboratory test on beams reinforced with three dimensional continuous carbon fiber grid. The grid is prefabricated by three-dimensional weaving and epoxy...

Modeling Bond Stress-Slip of Reinforcing Bars Embedded in SIFCON
A brief description is given of the mechanisms associated with the bond shear stress versus slip response of deformed reinforcing bars embedded in slurry infiltrated fiber concrete (SIFCON)....

Determination of Interfacial Shear and Normal Stresses in Fiber Pull-Out
In this paper we present an improved formulation for the pullout problem, wherein both the effects of fiber end condition and interfacial and frictional shear stresses are considered....

Failure Prediction of Anisotropic Material
Basic mathematical elements of a higher order failure theory for anisotropic material are outlined. Surface closure is ensured by requiring a tensor polynomial to satisfy constraint conditions....

Microcrack Interaction Toughening in Ceramics and CMCs
The generation of microcracks, which causes an extension of the damage zone at values of stress intensity factor, K, below the expected critical level represented by KIC...

Pattern Formation and Time-Dependence in Flowing Sand
The authors present results for a number of experiments on flowing granular materials and a novel cellular automata model for the flow of these materials when the grains are long and thin....

Modeling the Chaotic Behavior in Simple Shear Granular Flows
Simple shear granular flows have demonstrated a variety of puzzling phenomena. Both computer simulations and physical experiments have discovered particle grouping, layering and shear...

Mechanics of Granular Materials at Very Low Effective Stress Levels
Gravity's influence on laboratory specimens of uncemented granular materials subjected to low effective stresses, makes it impossible to evaluate constitutive properties in an unambiguous...

Stresses in Open Section Fiber Reinforced Composite Beams Under Constant Shear Loading
A strength of materials approach from the ply level is used to derive expressions for stresses in statically determinate open section composite beams subjected to constant shear loading....

An Analysis of an Inflatable Module for Planetary Surfaces
Design and construction of a structure on planetary surfaces requires addressing a host of issues not encountered on Earth. A modular quilted inflatable structure consisting of thin membranes...

The Effect of Multiple Compliant Layers at the Fiber-Matrix Interface on Residual Thermal Stresses in Metal Matrix Composites
The large mismatch in thermoelastic properties of the fiber and matrix phases in advanced metal matrix composites, coupled with high consolidation temperatures, produces severe residual...

The Transport and Fate of Drilling Muds
The disposal of drilling muds from offshore oil platforms is of concern because of the potential effects of pollution from these muds. Both drilling muds and fine-grained bottom sediments...

Modeling 3-D Circulation Using the DSS Technique
The direct stress solution (DSS) technique allows a numerical internal mode solution for the vertical variation of shear stress, rather than velocity, in a three-dimensional circulation...

Serviceability Analysis of Wood Beams with Creep
The effect of creep deformations on the serviceability reliability of single, dimension lumber wood beams is examined. A viscoelastic stress-strain relationship is used to model the time-dependent...

Probabilistic Evaluation of Bearing Capacity of Shallow Foundations
A probabilistic model is developed to evaluate the bearing capacity of shallow foundations. The bearing capacity formulation proposed by Terzaghi is used but with the bearing capacity...

Seismic Response Variability of Soil Sites
The seismic response variability of soil sites due to randomness associated with both the input base motion and spatial inhomogeneity of the shear modulus is investigated. Some numerical...

Fatigue Life Variability and Reliability Analysis of a Wind Turbine Blade
Wind turbines must withstand harsh environments that induce many stress cycles into their components. A numerical analysis package is used to illustrate the sobering variability in predicted...

Response of Secondary Systems to Short Duration Stochastic Input
Techniques have been developed for evaluating the mean-square response of systems to non-stationary loads. To gain insight into the response behavior, approximate expressions have been...

 

 

 

 

Return to search