Predicting the Performance Limits of Soil-Culvert Systems
A finite element model for elastic plastic large deformation analysis of soil-culvert systems is presented. Predictions of this numerical model are in good agreement with failure tests...

Scattering of Waves by Steel Reinforcement in Concrete
The application of wave-sensing methods to the non-destructive evaluation of concrete structures requires often the use of simple (or at least tractable) models for the solution of the...

Inverse Problems in Biomechanics
The FEM (Finite Element Method) is a powerful numerical technique in solving boundary value problems in Biomechanics, which are difficult to analyze by other closed form or numerical procedures...

Pattern Formation and Time-Dependence in Flowing Sand
The authors present results for a number of experiments on flowing granular materials and a novel cellular automata model for the flow of these materials when the grains are long and thin....

Mechanics of Granular Materials at Very Low Effective Stress Levels
Gravity's influence on laboratory specimens of uncemented granular materials subjected to low effective stresses, makes it impossible to evaluate constitutive properties in an unambiguous...

Laboratory Testing of Mechanical Rock Bolts
An analytical solution to a boundary value problem of a clamped cylindrical panel with anti-symmetric angle-ply laminations subjected to transverse loads is presented. Sanders' kinematic...

Prototype Lunar Base Construction Using Indigenous Materials
A lunar base must be designed to withstand harsh lunar conditions, which include severe internal pressure loads and a high radiation level. Yet to provide for economical and rapid future...

Cylindrical Fabric-Confined Soil Structures
Using the local soil as a structural material can greatly reduce the transport requirements for constructing Lunar and Martian surface structures. A fabric-soil structural concept which...

Experimental, Physical and Numerical Modeling of Lunar Regolith and Lunar Regolith Structures
An extensive series of laboratory strength and deformation experiments have been performed on a lunar regloith simulant. Results of these experiments are compared to results from experiments...

The Small Mars Rover
Mars rover is one of the principal technical means intended for studying the surface of Mars. The first Mars rover was delivered to the Mars surface in 1971 and was designed for studying...

Experimental Study of Underground Exploration by Auger Boring on a Mars Rover
A system study was conducted on the possibility of exploring Mars using a Mars Rover, and particular efforts were focused on the underground exploration of Mars by an auger boring machine....

Indigenous Planetary Construction Material Through Soil Modification
This paper will discuss the theory of soil modification and its potentials for producing planetary construction materials. The authors will also present the results of prelimnary experriments...

Mechanical Properties of Lunar Soil and Simulants
Investigation of the physical and mechanical properties of lunar soil carried out by the USSR and the USA; both in situ and on returned samples, has resulted in considerable information...

Structural Materials from Lunar Simulants Through Thermal Liquefaction
Thermal liquefaction that allows development of intermediate ceramic composites from a lunar simulant with various admixtures is used to develop structural materials for construction on...

In-situ Release of Solar Wind Gases from Lunar Soil
A concept is described which has the potential to perform the in-situ heating of the lunar regolith in order to release the solar wind gases. The poor thermal conductivity of the lunar...

Hydrogen Reduction of Lunar Soil and Simulants
Carbotek, Inc., and the Energy and Environmental Research Center (EERC) are cooperating on further development of the Carbotek process to produce oxygen from lunar ilmenite by hydrogen...

Lunar Oxygen ? The Reduction of Glass by Hydrogen
The direct reduction of volcanic glass by hydrogen has been proposed as a method of extracting oxygen from the lunar soil. Experiments using lunar simulant glasses reacted with flowing...

A Modified Sulfate Process to Lunar Oxygen
A modified sulfate process which produces oxygen from iron oxide-bearing minerals in lunar soil is under development. Reaction rates of ilmenite in varying strength sulfuric acid have...

Steady State Composition with Low Fe?+ Concentrations for Efficient O2 Production by Magma Electrolysis of Lunar Soils
Parameters are estimated for a hypothetical, well stirred, continuous-feed electrolytic cell that converts 20% of a lunar soil feedstock to O2 gas,...

Beneficiation of Lunar Rocks and Regolith: Concepts and Difficulties
Considerations of the resources which can provide feedstocks of ilmenite, glass, agglutinates, anorthite, etc. at a lunar base require an appreciation of the geology of the situation....

 

 

 

 

Return to search