Mathematical Characterization of Fabric and Its Use in Mechanics of Geomaterials
Increased evidence of the influence of their discrete nature on the observed behavior of geomaterials has prompted a number of investigators to look at these materials at the microstructural...
The Effective Stress Path for Soil at High Pressure
The effect of increasing stiffness in the soil skeleton on the effective stress path in undrained triaxial compression tests is experimentally examined and found to not be significant....
Constitutive Equation for Granular Material by Hypoelasticity
Constitutive equations for soil based upon the incremental theory of hypoelasticity are proposed in this paper to account for the stress path dependency and dilatant behavior of soil....
The Microstructure of Hardened Cement Paste and Concrete
Concrete is a composite material created from a mixture of a binder (hardened portland cement paste) and a filler (fine and coarse aggregates). Like any other composite material the physical...
Micromechanics Based Design for Pseudo Strain-Hardening in Cementitious Composites
Micromechanical model constructed on the basis of fracture mechanics and fiber bridging provides a means of selection of fiber, matrix and interface property combinations for which short...
Effect of Micro-parameters on the Macroscopic Behaviour of Ductile Fiber Reinforced Brittle Matrix Composites
In this paper, the modelling of crack bridging stress vs crack opening (?-?) relation of ductile fiber brittle matrix composite in terms of its microscopic parameters is described. Parametric...
The Morphology and Dynamics of Natural and Laboratory Grain Flows
Artificially generated sand flows that display considerable similarity with field examples on eolian dunes allow documentation of the relationships between grainflow scales and the characteristics...
Computer Simulation of Granular Flows
Discrete-particle computer simulations using up to 15,000 identical spheres reproduce particle-scale information obtained from high-speed motion picture observations of disperse, collision-dominated...
Discrete Mechanics of Sediment Transport
Usually a granular medium is being represented by a continuous approximation in which the degrees of freedom of individual grains are averaged away in favor of a partial differential equation...
Computer Simulation of Dry Layered Granular Flow Down an Incline Composed of Grains
Experiments show that gravity-driven dry granular flows are essentially layered for smooth spheres. This paper describes layer-to-layer interaction in the flow. Assuming two-dimensional...
Numerical Simulation of a Sphere Moving Down an Incline with Identical Spheres Placed Equally Apart
This paper describes a numerical study of an elastic sphere moving down an incline with a string of identical spheres placed equally apart. Two momentum equations and a moment equation...
A Sphere Moving Down an Inclined Bumpy Surface
A sphere moving down a bumpy incline in the air is studied theoretically and experimentally. A method based on the principle of energy conservation is used to express the average velocity...
Distributed Failure Analysis, Fallacies and Remedies
In the past, two distinctly different approaches - smeared and discrete failure descriptions have been utilised to capture failure mechanisms in solids and structures. These two approaches...
Computational Gradient Plasticity
The inclusion of higher-order deformation gradients is of paramount importance for properly describing strain localization within the framework of continuum mechanics. In this contribution...
Failure Analysis of Masonry Structures
The use of smeared-crack and interface elements for the analysis of masonry structures is investigated. While a variety of structural problems can be solved with a combination of both...
Numerical Analysis of Discrete Nonlinear Fracture Mechanics
Because cementitious materials tend to fail by fracture along discrete interfaces, it makes sense to analyze this behavior with discrete nonlinear fracture mechanics. Using the finite...
Computational Framework for 3D Nonlinear Discrete Crack Analysis
Under contract from the Electric Power Research Institute (EPRI) to investigate the applicability of fracture mechanics to concrete dams, the authors are involved in the development of...
Discrete Markov Process Approach to Fatigue Crack Growth
The discrete Markov approach considered herein is simple to implement and uses a two-dimensional stochastic model in conjunction with simulation to estimate model parameters. The possibility...
Frequency Response of Disordered Periodic Structures
A computational procedure is given for calculating the frequency response of disordered periodic structures based on wave propagation theory. An ideal periodic structure is composed of...
Random Response of Multicrystalline Structures
An approach to the probabilistic modelling and analysis of multicrystalline microfabricated beams is presented with application to micro-electro-mechanical systems (MEMS). Random, textured...
Return to search