Constitutive Modeling for Material with Perfect Disordered Heterogeneity
Finite element analysis with large number of elements are performed to simulate perfect disordered heterogenous material. The probabilistic nature of the micromechanical behavior of the...
Interaction Between Soil and a Rigid Foundation in a Layered Medium: A New Analytical Approach
This paper is concerned with derivation of the impedance matrix for the problem of interaction between soil and an embedded rigid foundation in a layered medium. As an approximation, the...
Dynamic Response Analysis of Pile Foundations by Using Variational Calculus
Various approaches have been developed for the frequency-domain dynamic response analysis. The one proposed by M. Novak (1974) is simplest of all and yet produces the results very close...
Flexible Plates for Control of Stress Distribution
Use of a flexible plate in minimization of soil reaction concentrations at the edge was analyzed. The analysis utilizes a solution for vertical vibrations of the circular flexible plate...
Experimental and Theoretical Dynamic Compliances of Foundations
An experimental study of the dynamic behavior of surface foundations on granular soils by centrifuge modeling is presented. The test method allows a direct measurement of the complex-valued...
Wave Propagation in Solids
The last fifty years have seen the development of a large number of application of the theory of wave propagation in solids to problems of interest to civil engineers. Most notable have...
Mathematical Characterization of Fabric and Its Use in Mechanics of Geomaterials
Increased evidence of the influence of their discrete nature on the observed behavior of geomaterials has prompted a number of investigators to look at these materials at the microstructural...
The Effective Stress Path for Soil at High Pressure
The effect of increasing stiffness in the soil skeleton on the effective stress path in undrained triaxial compression tests is experimentally examined and found to not be significant....
Constitutive Equation for Granular Material by Hypoelasticity
Constitutive equations for soil based upon the incremental theory of hypoelasticity are proposed in this paper to account for the stress path dependency and dilatant behavior of soil....
The Morphology and Dynamics of Natural and Laboratory Grain Flows
Artificially generated sand flows that display considerable similarity with field examples on eolian dunes allow documentation of the relationships between grainflow scales and the characteristics...
Predicting the Performance Limits of Soil-Culvert Systems
A finite element model for elastic plastic large deformation analysis of soil-culvert systems is presented. Predictions of this numerical model are in good agreement with failure tests...
Pattern Formation and Time-Dependence in Flowing Sand
The authors present results for a number of experiments on flowing granular materials and a novel cellular automata model for the flow of these materials when the grains are long and thin....
Laboratory Testing of Mechanical Rock Bolts
An analytical solution to a boundary value problem of a clamped cylindrical panel with anti-symmetric angle-ply laminations subjected to transverse loads is presented. Sanders' kinematic...
Cylindrical Fabric-Confined Soil Structures
Using the local soil as a structural material can greatly reduce the transport requirements for constructing Lunar and Martian surface structures. A fabric-soil structural concept which...
The Small Mars Rover
Mars rover is one of the principal technical means intended for studying the surface of Mars. The first Mars rover was delivered to the Mars surface in 1971 and was designed for studying...
Experimental Study of Underground Exploration by Auger Boring on a Mars Rover
A system study was conducted on the possibility of exploring Mars using a Mars Rover, and particular efforts were focused on the underground exploration of Mars by an auger boring machine....
Indigenous Planetary Construction Material Through Soil Modification
This paper will discuss the theory of soil modification and its potentials for producing planetary construction materials. The authors will also present the results of prelimnary experriments...
Mechanical Properties of Lunar Soil and Simulants
Investigation of the physical and mechanical properties of lunar soil carried out by the USSR and the USA; both in situ and on returned samples, has resulted in considerable information...
Structural Materials from Lunar Simulants Through Thermal Liquefaction
Thermal liquefaction that allows development of intermediate ceramic composites from a lunar simulant with various admixtures is used to develop structural materials for construction on...
In-situ Release of Solar Wind Gases from Lunar Soil
A concept is described which has the potential to perform the in-situ heating of the lunar regolith in order to release the solar wind gases. The poor thermal conductivity of the lunar...
Return to search