Kinematic Models of Extensional Structures: Seismic Implications
Kinematic models can relate faults of different types and different positions within a single dynamic system and thereby offer the potential to explain the disparate seismic activity characteristic...
Iodine Transport Through the Soil-Plant-Atmosphere Continuum
The environmental assessment of the geological disposal of Canadian nuclear fuel waste involves transport modelling of radionuclides through the biosphere. Iodine-129 is a major fission...
Simulation of Reactive Chemical Transport in a Varying Thermal Field with Reaction-Flow Coupling
A computer program, THCVP, simulates coupling between advective/diffusive solute transport and chemical reactions, coupling of the reactions to heat transport, and feedback from precipitation/dissolution...
Simulation of Radionuclide Retardation at Yucca Mountain Using a Stochastic Mineralogical/Geochemical Model
This paper presents preliminary transport calculations for radionuclide movement at Yucca Mountain using preliminary data for retardation parameter distributions based on mineral distributions....
Optimal Route Selection for High Level Nuclear Waste Transport Based Upon Radiological Risk
The purpose of this paper is to demonstrate route optimization based directly upon the minimization of radiological risk as computed from local conditions. An operational impact analysis...
Outline of Performance Assessment Study on Geological Isolation System in Japan
The goals of current R&D activities are to ensure the feasibility of geological isolation of HLW in Japan and then to establish the social acceptance. In order to attain these...
Evaluation of Near-Field Thermal Environmental Conditions for a Spent Fuel Repository in Tuff
A repository heat transfer analysis is being performed by the Pacific Northwest Laboratory (PNL)a for the U.S. Department of Energy's...
A Numerical Study of Some Effects of Nuclear Fuel Waste Vault Construction and Closure on Evolution of Groundwater Flow Paths in the Geosphere
We have performed a series of three dimensional finite-element simulations on the sensitivity of the groundwater flow paths and travel times in a conceptual hydrogeological model with...
Three-Dimensional Plume Dynamics in the Vadose Zone: PORFLO-3 Modeling of a Defense Waste Leak at Hanford
In 1973, approximately 450 m3 of liquid containing radioactive and chemical wastes leaked from the 241-T-106 single-shell tank into the vadose zone...
Geochemical Modeling: An Integrated Approach to Nuclear Waste Disposal Issues
To meet nuclear waste repository licensing requirements, the response of repository components and of the enclosing host rocks and fluids to temperature fluctuations, fluid flow, radionuclide...
Simulation Modeling of Subsurface Development
This paper discusses the use of simulation modeling in analyzing subsurface development activities and estimating associated costs at the Yucca Mountain candidate repository site. Described...
Systems Models for Predicting Radioactive Waste
This paper illustrates how a model can be constructed to analyze the growth of accumulated spent Light-Water-Reactor fuel using a technique from systems theory which has proved to be capable...
Near-Field Modelling for the Safety Assessment of French High-Level Waste Repositories
In assessing the safety of a French high-level waste repository, the fluxes of radionuclides released by the near-field into the geosphere are modelled by the CONDIMENT source code. This...
Optimization Method for Dimensioning a Geological HLW Waste Repository
This method was developed by the CEA to optimize the dimensions of a geological repository by taking account of technical and economic parameters. It involves optimizing radioactive waste...
Trends in Waste Management Program Costs: An Evolution of Estimating Methods and Results
The purpose of this paper is to present a summary of how the program cost projections contained in the five TSLCC analyses performed to-date and the estimating methods used to make these...
The Role of Sensor Directed, Model-Based Control in Robotic Handling of Nuclear Waste Casks and Materials
This paper discusses the results from several projects at Sandia National Laboratories investigating the application of intelligent machine technologies to remote handling of nuclear waste...
Analysis of RADTRAN Transportation Model
The RADTRAN computer model, used to estimate the risks of transporting waste to a high-level repository, is critically reviewed. Ignoring high consequence accidents, human error, sabotage,...
Multi-Dimensional Modeling of Unsaturated Flow in the Vicinity of Exploratory Shafts and Fault Zones at Yucca Mountain, Nevada
Modeling studies were conducted to determine the potential effects of exploratory shafts on moisture distribution in the vicinity of an exploratory shaft facility, and the potential for...
Applications of Fracture-Flow Modeling to Site Characterization
This paper describes practical applications of discrete-fracture approaches for design and analysis of groundwater flow about high-level radioactive waste repositories. The paper presents...
The Systems Integration Modeling System
The Systems Integration Modeling System (SIMS) is an analysis tool for the detailed evaluation of the structure and related performance of the Federal Waste Management System (FWMS) and...
Return to search