Asymptotic Importance Sampling
One of the main issues in reliability analysis is the accurate and efficient calculation of the multivariate reliability integral. The Asymptotic Importance Sampling Technique (AIS) selects...

Sampling Techniques for Time-Variant Reliability Problems
Time-variant structural reliability problems arise when the structural resistance may change with time (such as in structural deterioration) or when the system is acted upon by two or...

A Unified Simulation Approach to Structural System Reliability Analysis
To determine accurate estimates for the system reliability of large complex structures requires considerable computation; unless the problem is assessed in an efficient manner the analysis...

Comparison of Some Importance Sampling Techniques in Structural Reliability
The approximate calculation of structural reliabilities by FORM/SORM is well known. Nevertheless, alternatives or at least methods with which the error by these methods can be quantified...

Use of Importance Sampling Constraints in System Optimization
An important application of system reliability analysis is to incorporate overall system risk as a constraint in a structural optimization. The paper describes the use of Monte Carlo Importance...

Variability Response Functions and Stochastic Field Discretization in Stochastic Finite Element Methods
Stochastic systems whose mechanical properties vary spatially are investigated in the present paper. The stochastic response variability of the systems is characterized by means of the...

Updating of Dynamic Structural Systems by Learning
Many techniques have been developed to identify structural system parameters; however, they are generally restricted to parameter identification within the framework of an equivalent structure...

Dynamic Response of Uncertain Two-Dimensional Structures
A concept for the reliability analysis of structures with uncertain elastic and mass properties is presented. Its applicability is shown by means of a numerical example. The results are...

On the Approximated Solution of Non-Linear Systems Under Non Gaussian Excitations
The study of non-linear mechanical and structural systems under random excitations has become very important in the last years. When random excitations are Gaussian, many approaches can...

Random Vibration of the Viscoelastic Structure under Series of Stochastic Excitations
In the paper the vibration of viscoelastic single-degree-of-freedom system caused by a random series of pulses is considered. The linear rheological model for the creep law is assumed....

Probabilistic Evaluation of Redundancy of Bridge Structures
Redundancy of bridge structures and methods to evaluate redundancy are reviewed in this paper. A method to measure redundancy based on the existing theories of probability as related to...

Incorporating Corrosion in Reliability-Based Design of Anchored Bulkheads
Corrosion of steel is an important factor in the design of marine structures. A reliability analysis of anchored bulkheads showed that corrosion changes the critical failure mode from...

Pre-Envelope Covariance Differential Equations
The problem of predicting the safety of structural systems subjected to random loading arises in may engineering applications. In this framework the envelope process plays an important...

In-Plane Non-Linear Random Vibration of Composite Plates
Filamentary composite structural components used in engineering applications are usually subjected to stochastic loads. Composites have strongly anisotropic properties and display significantly...

Linear System Spectral Moments Determination
The stationary response of a linear system to random excitation is considered. A previously developed approach is extended to be applicable for the determination of both even and odd order...

Probabilistic Characteristics of a Sliding Structure Via New Stochastic Linearization Methods
New, non-classical stochastic linearization techniques are applied to solve the titled problem. Two alternative criteria, suggested by X. Zhang and I. Elishakoff, respectively, are evaluated....

Reliability Consideration in Shakedown Analysis
Shakedown analysis for ductile rigid frames has shown that a structure can respond linearly at a higher elastic limit after it has experienced some plastic deformation. If the residual...

Parameter Estimations of Structural Dynamic Systems
In this paper, time-domain methods for estimating the system parameters and the modal properties of linear structural dynamic systems are studied. The autoregressive and moving average...

Evaluation of Expansive Clay Soils in Tucson, Arizona
Research was conducted to investigate the mineralogy, engineering properties, and regional distribution of expansive clay soils in Tucson, Arizona. Data derived from X-ray diffraction...

Geotechnical Database Manipulation to Effect Stochastic Analysis
Existing or easily-developed databases of regional geotechnical information can be used to estimate prior probability distributions and parameters for use in stochastic analyses. Prior...

 

 

 

 

Return to search