Size, Temperature and Rate Effects on the Fracture Toughness of Saline Ice
This paper presents the results of an extensive experimental study performed with the aim of investigating the effects of temperature, size and loading rate on the fracture toughness of...
Experimental Photoelastic Analysis of Tunnels Containing Cracks
Due to the presence of cracks the strength of the structure is decreased in the present paper an experimental two dimensional photoelastic technique has been developed to analyze the circular...
Computerized Tomographic Analysis of Fluid Flow in Fractured Tuff
The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix inhibition in a sample of Bandelier...
Two-Dimensional Statistical Micromechanical Models for Microcracked Brittle Solids
Recent development undertaken by the authors in two-dimensional statistical micromechanical models for brittle solids with randomly located interacting microcracks is presented. Overall...
Softening Models for Concrete: Stability and Uniqueness
A microstructurally-based, numerically oriented, fracture-induced softening model for concrete is presented. Rate-dependent evolution equations for microcrack nucleation, growth, and coalescence...
Three-Dimensional Fracture Process Zone Detection in Concrete
Process zones in concrete have been under intensive investigations during the past several years. Techniques have successfully been used to detect and map the 2-D superficial process zone....
Detection of Cracks in Reinforced Concrete Cans
The Acoustic Emission Technique (AET) is known as a good possibility for non destructive detection of cracks in metal down to very small dimensions. To use AET for concrete, an efficient...
Stochastic Modeling of Fatigue Crack Growth with Retardation
This paper develops a new methodology for modeling fatigue crack growth accounting for both material inhomogeneity and the random nature of the loading process by modeling the crack growth...
Strain-Based Damage Deactivation in Concrete
Motivated by the 'mode I' microcrack opening and closing mechanism, a procedure for the deactivation of the damage is developed. Strain based projection operators are used to negate the...
Automated Identification of Compression-Induced Cracking in Cement Paste
The development of image analysis techniques to identify cracks using scanning electron microscope images of hydrated cement paste is described. Cracks are identified based on both the...
Dugdale Model Applied to Crack Interactions
It is doubtful that modelling crack interactions problem within the context of elasticity adequately reflects the physical aspects as the failure of brittle material is approached. A model...
Contact Induced Damage
Contact induced damage is an important source of potential failure of engineering components. The particular applications where this damage occurs are in the automotive, aerospace and...
Estimating Damage and its Influence on Fracture Toughness
To estimate damage in a quantitative manner, a technique used whereby six values of linear strain are measured on a material element as a function of hydrostatic pressure. The high precision...
Ultrasonic Wave Scattering by a Crack in a Composite Plate
A hybrid method is presented for analyzing ultrasonic wave scattering of plane strain waves by a crack in a composite plate. The hybrid method combines a finite element formulation in...
Retrospect and Prospect: Micromechanics
In the mechanics community the term micromechanics is often used to identify scientific efforts in which certain overall macroscopic material response and failure modes are characterized...
Effect of Micro-parameters on the Macroscopic Behaviour of Ductile Fiber Reinforced Brittle Matrix Composites
In this paper, the modelling of crack bridging stress vs crack opening (?-?) relation of ductile fiber brittle matrix composite in terms of its microscopic parameters is described. Parametric...
Failure Analysis of Masonry Structures
The use of smeared-crack and interface elements for the analysis of masonry structures is investigated. While a variety of structural problems can be solved with a combination of both...
Numerical Analysis of Discrete Nonlinear Fracture Mechanics
Because cementitious materials tend to fail by fracture along discrete interfaces, it makes sense to analyze this behavior with discrete nonlinear fracture mechanics. Using the finite...
Computational Framework for 3D Nonlinear Discrete Crack Analysis
Under contract from the Electric Power Research Institute (EPRI) to investigate the applicability of fracture mechanics to concrete dams, the authors are involved in the development of...
Discrete Markov Process Approach to Fatigue Crack Growth
The discrete Markov approach considered herein is simple to implement and uses a two-dimensional stochastic model in conjunction with simulation to estimate model parameters. The possibility...
Return to search