Automated Sensor Tester

by Dave Hayward, Sandia Natl Lab, Albuquerque, United States,

Document Type: Proceeding Paper

Part of: Robotics for Challenging Environments


The Automated Sensor Tester (AST) is being developed by Sandia National Laboratories for the Department of Energy (DOE) to be a tool to aid in testing exterior intrusion detection sensors in a fixed site security system. This is accomplish by automatically performing a simulated intrusion test of the sensors installed in the Perimeter Intrusion Detection and Assessment System (PIDAS). During the test, a target is moved across the detection zone of the sensor, simulating a human moving through the detection zone. The first phase of this project concentrated on automatically testing the bi-static microwave exterior intrusion detection sensor in one sector of a PIDAS. This sensor was selected because it is commonly used, and the test target has been determined and is presently in use. The goal of the AST project is to provide consistent test results, automatic data logging, easier data reduction and reduced manpower to perform the DOE mandated and frequent intrusion detection sensor tests. The AST will help to determine that the intrusion sensor being tested is functional and has even and adequate detection along its entire detection zone. The AST consists of two vehicles and a data logger. The Mother Vehicle contains the processing and navigation capability and deployed and retrieved the Target Vehicle. The Target Vehicle provided the alarm stimulus. The Alarm Interface/Data Logger was connected to the intrusion sensors alarm signal and recorded the test results. This system will autonomously conduct a series of tests on an entire PIDAS sector. This paper describes the three elements of the AST system and their operation.

Subject Headings: Sensors and sensing | Automation and robotics | Microwaves | Vehicles | Federal government | Project management | Navigation (geomatic) | Probe instruments

Services: Buy this book/Buy this article


Return to search