Artificial Neural Networks and Knowledge-Based Systems: Complementary AI Techniques for Civil Engineering
by Nabil Kartam, Univ of Maryland, College Park, United States,Ian Flood, Univ of Maryland, College Park, United States,
Tanit Tongthong, Univ of Maryland, College Park, United States,
Document Type: Proceeding Paper
Part of: Computing in Civil and Building Engineering
Abstract:
This paper considers the feasibility of integrating Artificial Neural Networks (ANNs) and Knowledge-Based Systems (KBSs) to solve civil engineering problems. KBSs are superior at representing human judgments, and in solving problems by reasoning with heuristic knowledge. ANNs offer different problem-solving characteristics including learning from example, recognizing patterns, and processing data in parallel. The integration of both technologies provides a hybrid system with the merits of both techniques, and with a broader scope of application within civil engineering. Consideration is given to the advantages of ANN and KBS hybrids, alternative methods of integration, and their potential applications.
Subject Headings: Neural networks | Systems engineering | Knowledge-based systems | Feasibility studies | Artificial intelligence (AI) | Algorithms | Hybrid methods
Services: Buy this book/Buy this article
Return to search