American Society of Civil Engineers


Dynamic Energy Based Method for Progressive Collapse Analysis


by Stefan Szyniszewski, (University of Florida, Gainesville, FL 32611 E-mail: stefanworld@gmail.com)

pp. 1-10, (doi:  http://dx.doi.org/10.1061/41031(341)138)

     Access full text
     Purchase Subscription
     Permissions for Reuse  

Document type: Conference Proceeding Paper
Part of: Structures Congress 2009: Don’t Mess with Structural Engineers: Expanding Our Role
Abstract: Physics based collapse simulations of moment resisting steel frame buildings are presented with an emphasis on the development of energy flow relationships. It is proposed that energy flow during progressive collapse can be used in evaluation of moment resisting, steel frame building behavior and specifically, localized failure. If a collapsing structure is capable of attaining a stable energy state through absorption of gravitational energy, then collapse will be arrested. Otherwise, if a deficit in energy dissipation develops, the unabsorbed portion of released gravitational energy is converted into kinetic energy and collapse propagates from unstable state to unstable state until total failure occurs. The energy absorption of individual members provides very transparent information on structural behavior as opposed to oscillating internal dynamic forces in structural members. Therefore, critical energy absorption capacity is hereby proposed as a stable failure criterion in progressive collapse analysis. Energy flow quantification is shown to be readily available from the dynamic finite element simulations. The proposed dynamic, energy based approach to progressive collapse, provides insight and a simple yet robust analysis for producing structures capable of resisting abnormal loadings and/or unexpected hazards.


ASCE Subject Headings:
Energy
Finite element method
Numerical models
Progressive collapse
Steel frames