American Society of Civil Engineers

Use of a Hybrid Algorithm for Modeling Coordinated Feeder Bus Route Network at Suburban Railway Station

by Prabhat Shrivastava, M.ASCE, (Prof. (Transp. Eng.), Civ. Engrg. Dept., Sardar Patel Coll. of Engrg., Andheri (W), Mumbai, India) and Margaret O’Mahony, (corresponding author), (Prof. & Head, Dept. of Civ., Struct. & Envir. Engrg.; Dir., Centre for Transp. Res., Trinity Coll., Dublin 2, Ireland E-mail:

Journal of Transportation Engineering, Vol. 135, No. 1, January 2009, pp. 1-8, (doi:

     Access full text
     Purchase Subscription
     Permissions for Reuse  

Document type: Journal Paper
Abstract: In the metropolitan cities of developed and developing countries, longer journeys are mostly performed by two or more modes. In the event of availability of suburban trains and public buses, commuters prefer to travel a longer stretch of their journeys by train, so as to avoid traffic congestion on roads, and the remaining part by buses to reach local areas if their final destination is not in close proximity to railway stations. Normally suburban trains have fixed corridors and buses have the flexibility to serve remote local areas. Thus design of feeder routes from railway stations to various destinations and the transfer time from trains to buses plays a very important role and can be controlled by transport planners. A considerable amount of research has been done on the independent design of a bus route network without considering the effect of train services. Researchers have made attempts using heuristics, simulation, expert systems, artificial intelligence, and optimization techniques for design of routes and schedules. So far, limited effort has been made in modeling coordinated operations. In this research, a new hybrid algorithm which exploits the benefits of genetic algorithms and a well tested heuristic algorithm for the study area is discussed. More convincing results in terms of feeder routes and coordinated schedules at the selected railway station are obtained by the proposed hybrid algorithm as compared to earlier approaches adopted by the writers for the same study area.

ASCE Subject Headings:
Hybrid methods
Railroad stations