Ultrasonic Velocity Meter Used in Stream Gaging

by L. D. Fayard, U.S. Geological Survey, Altamonte Springs, United States,



Document Type: Proceeding Paper

Part of: Hydraulic Engineering

Abstract: Many streams and canals in Florida are affected by tides or control structures and experience very low flow velocities at times. For example, the St. Johns River in northeastern Florida is affected by tides for about 140 miles upstream from its mouth and many canals in the Miami area of southeastern Florida are controlled by manmade structures and other elements that cause a variable backwater effect and very low flow velocities. For these conditions, it becomes necessary to obtain a continuous index of mean velocity as well as stage in order to compute discharge. Point-velocity sensing systems have been used to relate point velocity to mean velocity but their usefulness commonly is limited because of the lack of an exact relation. The ultrasonic velocity meter (UVM) provides an alternative approach to measuring a velocity index that can be related to mean velocity; one that provides an integrated velocity at a prescribed elevation across a stream. Six stations in the tidal-affected lower St. Johns River basin are presently equipped with UVM's. Measuring sections are as narrow as 100 feet and as wide as 900 feet. Multiple acoustic paths are used to measure wide sections in a straight reach of river; crossing paths are used to measure sections in a bend of the river. Because of low velocity and variable backwater conditions, flow also is measured with UVM's in 11 canals in the Miami area that drain into The Everglades. At some of the canal sites transducers have been permanently mounted and a 'portable' UVM module is used to obtain instantaneous velocity readings.

Subject Headings: Fluid velocity | Rivers and streams | Ultrasonic methods | Flow measurement | Stream gauge | Tides | Canals | Backwater | Low flow | Flow control | North America | Florida | United States | Miami

Services: Buy this book/Buy this article

 

Return to search