Direct Integration Methods in Structural Dynamics

by Robert E. Nickell, (M.ASCE), Visiting Assoc. Prof. of Engrg.; Brown Univ., Providence, RI,

Serial Information: Journal of the Engineering Mechanics Division, 1973, Vol. 99, Issue 2, Pg. 303-317

Document Type: Journal Paper


Several alternative methods for directly integrating the governing equations of structural dynamics are reviewed. First, characteristics of the matrix equations, such as the spread in structural eigenvalues, or stiffness, the bandwidth and sparseness, and the frequency spectrum of the forcing function, are examined. Then, criteria that can be used to select a direct integration algorithm, such as artificial damping and periodicity error, are analyzed. Emphasis is given to results obtained for the Houbolt, Newmark, and Wilson operators, and their comparison to a class of stiffly stable operators. Correspondence of the Newmark method to the trapezoidal rule for γ = 1/2, β = 1/4 is shown. Recent application of these operators to nonlinear problems is covered.

Subject Headings: Structural dynamics | Matrix (mathematics) | Eigenvalues | Stiffening | Algorithms | Damping | Errors (statistics) | Comparative studies

Services: Buy this book/Buy this article


Return to search