Random Vibration Hysteretic, Degrading Systems

by Thomas T. Baber, (A.M.ASCE), Asst. Prof. of Civ. Engrg.; Univ. of Virginia, Charlottesville, Va.,
Yi-Kwei Wen, (M.ASCE), Assoc. Prof. of Civ. Engrg.; Univ. of Illinois, Urbana, Ill.,

Serial Information: Journal of the Engineering Mechanics Division, 1981, Vol. 107, Issue 6, Pg. 1069-1087

Document Type: Journal Paper

Abstract: A differential equation model for hysteretic systems with strength, stiffness or combined degradation is presented. Solution under white noise, Kanai filtered white noise and temporally modulated filtered white noise is obtained by equivalent linearization, without recourse to the Krylov-Bogoliubov approximation typically required for hysteretic systems. Resulting zero time lag covariance response matrices agree well with simulated solutions at all excitation levels. First passage predictions are nonconservative, because of the non-Gaussian character of the response.

Subject Headings: Filters | Differential equations | Stiffening | Chemical degradation | Linear functions | Approximation methods | Matrix (mathematics) | Excitation (physics) |

Services: Buy this book/Buy this article


Return to search